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J. Phys. A: Math. Gen. 14 (1981) L493-L498. Printed in Great Britain 

LETTER TO THE EDITOR 

The velocity autocorrelation function of an overdamped 
Brownian system with hard-core interaction 

Sarwat Hanna, Walter Hess and Rudolf Klein 
Fakultat fur Physik, Universitat Konstanz, D-7750 Konstanz, Germany 

Received 21 September 1981 

Abstract. The velocity autocorrelation function is calculated exactly for a system of 
Brownian particles interacting through hard-core potentials to lowest order in the volume 
concentration on the basis of the Smoluchowski equation. 

A quantity of basic interest in the dynamics of a particle interacting with many other 
particles in a liquid-like system is the velocity autocorrelation function (VAF). It is 
closely connected to other important quantities such as the mean square displacement 
and the self-diffusion coefficient of a tagged particle. Of particular interest is the 
long-time behaviour of the VAF after Alder and Wainwright (1967) discovered by 
means of computer experiments the algebraic t-3’2 tail for hard-core fluids (in three 
dimensions). This phenomenon has since been investigated in great detail and applies 
to all fluids with short-ranged interactions (Pomeau and RCsibois 1975). Only in fluids 
in which the particles interact through Coulomb potentials are the long-time tails of a 
different type (Baus and Hansen 1980). 

In this paper we investigate the VAF for a particular overdamped Brownian system. 
In recent years there has been great interest both experimentally and theoretically in 
understanding the dynamical properties of interacting large spherical particles 
immersed in a solvent (Pusey and Tough 1981). For many purposes the dynamical 
properties of such systems can well be described on the basis of the N-particle 
Smoluchowski equation. We calculate the VAF for a system of macroparticles interac- 
ting only through their hard cores on this basis exactly to first order in the volume 
concentration. 

Let rl(t) be the position of the tagged particle at time t. Then 

cl(k, t )  = exp[-ik rl(t)] (1) 

is the contribution of the tagged particle to the total concentration fluctuation of 
wavevector k. From (1) one finds for the velocity ul(t) = il(t) 

From its definition 
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the VAF can be rewritten using (2) and the isotropy of the system 
22 1 V I  

Z ( t -  t’) = lim - 7 (cl(k, t ) c l ( -k ,  t‘)) 
k-toatdt’ k 

a2 1 
= -1im 7 7 ( c l (k ,  t )  c l ( - k ,  t’)). 

k + O a t  k (4) 

The brackets (. . .) denote an equilibrium expectation value. Equation (4) can finally be 
expressed as an integral in configuration space 

Z(t - t’) = -1im 7 7 d{ri} d{rP} exp(-ik rl) PN({ri}, tl{rP}, t’) 
k - o d t  k ‘ I  I 

Here, P N ( { ~ ~ } ,  tl{r?}, t’) is the probability of finding the system in the configuration {Pi} at 
time t if it had the configuration {rp} at time t’, and pes denotes the equilibrium 
distribution function. 

If one takes the Laplace transform 
m 

z ( . z ) = Z { Z ( t ) } = [  0 dtexp(-zt)Z(t)  

of equation ( 5 )  one has to observe that the RHS of equation (3) is symmetric in t and t’ so 
that the time derivative of PN at t = t’ vanishes. Therefore 

x exp(-ik * r’?)peq({rp}j. (7)  

For the overdamped Brownian system under consideration the conditional probability 
PN satisfies the generalised Smoluchowski equation (GSE) (Deutch and Oppenheim 
1971, Murphy and Aguirre 1972) 

( a / a t  - R N ) P N ( { ~ ~ } ,  tl{rP), t ‘ )  = o for f a  t’. (8) 

It is now sufficient to restrict oneself to t > t’ because of the Laplace transform. In (8) 
is the Smoluchowski operator 

where we have neglected the hydrodynamic interaction and where Do denotes the 
diffusion constant of a free particle. Further, UN({ri}) is the N-particle interaction 
potential of the Brownian particles and p = ( k S T ) - l .  

The formal solution of (8) is 
PN({ri}, tl{rP>, t ’ ) = e x p [ ~ N ( t - t ‘ ) l ~ 6 ( r i - r i  0 1. 

Peq({riI) = 2;; ~xP[-PuN({~~I)I 

i 

The equilibrium distribution peq({ri}) is the time-independent solution of (8) 

where Z,, is the normalisation. 
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Using (10) in (7) 

d{ri} exp(-ik * r1)(z - h ~ ) - '  exp(ik * rl) peq({ri})}* (12) 

Employing the operator identity 

(13) 
1 1 l 1  1,. A -1 A 

( 2  - AN)-' =- [ I +  hN(z - hN)-'] =-  (1 +- nN +- nN(z -nN) nN) 
2 2 Z z 

in (12), performing some partial integrations where the explicit expression (9) of hN is 
used, the limit k + 0 can be taken with the result 

i ( 2 )  = DO(1 -Dop2&z)). (14) 

Here, &(z) is the Laplace transform of the correlation function of the force exerted on 
the tagged particle by the other Brownian particles 

We now specify the interaction between the particles to the hard-core potential 
N 

i , j= l  
uN({ri}) = 3 E' U(rij), 

0;) for lrijl < d 
for iriil > d. u(rij) = { 

The prime on the summation denotes i # j .  The diameter of a Brownian particle is d 
and rij = ri - ri. From the radial distribution function 

g ( r i j )  = exp[-pU(rij)] = e(r i j  - d )  (17) 

the force on the tagged particle can formally be expressed as 

Restricting our further investigation to effects of lowest order in the concentration of 
macroparticles, the force correlation function &(z) is given by the sum of two-particle 
contributions. Because of the statistical equivalence of the particles one obtains from 
(15) and (18) 

(19) 

where hi2 is the diffusion operator, which corresponds to (9), and describes the relative 
motion of the two-particle cluster 

If ;2(r12, z lrY2) denotes the Laplace transformed formal solution of the corresponding 
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two-particle diffusion equation 

equation (19) can be rewritten as 

$ ( z )  = &2(N/ V) /d3r12 / d3r?2 

The two-particle diffusion equation can be solved exactly (Hanna et a1 1981); the result 
is 

P”z(r12, 2 1 4 2 )  

= 0(rl2-d) 2 Y Y ( R ) ~ Y ( R O ) *  
i = O  m = - i  

(23) 

Here, YY (R) are spherical harmonics, jr(x) denotes spherical Bessel functions, kr(x) 
are modified spherical Bessel functions of the third kind and j ;  ( x )  and k;  (x) are their 
derivatives. Performing the integrations with respect to r12 and ry2 in (22) (for details 
see Hanna et a1 1981), the force correlation function is 

where 77 = ( 4 ~ / 3 ) ( d / 2 ) ~ ( N /  V )  denotes the volume concentration. The Laplace back- 
transform of (24) is 

m ( i ) = s / o m d x (  1-G) 4 exp(-2Dotx2/d2). 
(25) 

The remaining integral can be expressed either by Lommel functions (Gradstein and 
Ryzhik 1965) or .by Fresnel integrals (Abramowitz and Stegun 1970). Choosing the 
latter representation, 

Here, T = 4Dot/d2 is a reduced time; d2/(4Do) is the time which a free particle needs to 
diffuse a distance equal to its radius. S(x)  and C(x)  in (26) denote Fresnel integrals. 

Figure 1 displays the result for the force autocorrelation function as a function of 7. 
From (26), using the asymptotic expansions, d ( t )  behaves for large t as 
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Figure 1. Reduced force autocorrelation function (d2p2/477)4(t) as a function of the 
reduced time 7 = (4D0/d2)t .  

For short times 

From q5 ( t )  the VAF can be obtained using (14). The VAF consists of a 8 function at t = 0, 
followed by an entirely negative contribution which is monotonic. This qualitative form 
of the VAF was suggested earlier by Pusey (1978) for a system of highly charged 
polystyrene particles and can be obtained from a mode-mode coupling theory which 
was developed to describe such systems (Hess and Klein 1981). 

\ I 

Figure 2. Double-logarithmic plot of the reduced force autocorrelation function (same as 
figure 1) together with the asymptotic short- and long-time behaviour. 
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Whereas the VAF of a hard-core fluid had a tC312 long-time tail, we find for the 
overdamped Brownian hard-core system Z( t )  - t-s’2 at large t. The same result was 
obtained earlier for other Brownian systems (Jacobs and Harris 1977, Hess and Klein 
1981, Jones and Burfield 1981). This difference is due to the fact that the tP3I2 tail has 
its origin in momentum relaxations. In the overdamped Brownian system the momen- 
tum relaxation is much faster than spatial diffusion. This is just the reason why the 
Smoluchowski equation is under many circumstances a satisfactory basis for the 
description of overdamped Brownian systems. Therefore, the momentum relaxation 
tail is hidden in the 8 ( t )  term in our result for the VAF. 

Finally, it should be noted that (26) is proportional to the volume concentration 77; 
for non-interacting Brownian particles this term will vanish and the well known tC312 tail 
(Boon and Bouiller 1976, Pusey 1981) will survive. The theoretical description of this 
situation is however beyond the Smoluchowski equation. 

Fruitful discussions with Professor B Ackerson, who has done similar calculations, are 
gratefully acknowledged. 
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